994 resultados para cell shedding


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose. This non-dispensing cross-over study was conducted to determine if lenses presoaked in Opti-Free RepleniSH (OFR) or ReNu MultiPlus (RMP) cause solution-induced corneal staining (SICS) and subsequent cell sloughing before the typical 2 h in vivo examination point.

Methods. Study lenses (PureVision) were worn bilaterally by 13 participants for periods of 15, 30, 60, and 120 min using two different contralateral care regimen pairings. The lens worn on the test eye was soaked overnight in either OFR or RMP and the control eye in Clear Care (CC). After lens removal, corneal staining was rated on a scale of 0 (negligible) to 100 (severe) for four peripheral quadrants and the central region, and the differential global staining score was calculated by subtracting baseline staining scores. Following the staining assessment, corneal cells were collected from the ocular surface using a non-contact irrigation system to determine ocular cell shedding rates.

Results. Differential global staining score with OFR was greater than CC with the differences being statistically significant at 30 and 60 min (p < 0.01). Maximum staining with RMP was significantly greater than OFR and peaked after 60 and 120 min of lens wear (p < 0.01). On average, 710 ± 470 ocular cells were collected after lens wear, with similar shedding seen independent of solution or lens wear duration (p > 0.05).

Conclusions. SICS occurred earlier but to a significantly lower degree when PureVision lenses were presoaked in OFR compared with RMP, while lenses presoaked in CC did not cause SICS. Ocular surface cell shedding after lens removal was not impacted by lens wear durations of <=2 h.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A pilot study was conducted to evaluate human corneal epithelial cell shedding in response to wearing a silicone hydrogel contact lens/solution combination inducing corneal staining. The nature of ex vivo collected cells staining with fluorescein was also examined. A contralateral eye study was conducted in which up to eight participants were unilaterally exposed to a multipurpose contact lens solution/silicone hydrogel lens combination previously shown to induce corneal staining (renu® fresh™ and balafilcon A; test eye), with the other eye using a combination of balafilcon A soaked in a hydrogen peroxide care system (Clear Care®; control eye). Lenses were worn for 2, 4 or 6 hours. Corneal staining was graded after lens removal. The Ocular Surface Cell Collection Apparatus was used to collect cells from the cornea and the contact lens. In the test eye, maximum solution-induced corneal staining (SICS) was observed after 2 hours of lens wear (reducing significantly by 4 hours; p < 0.001). There were significantly more cells collected from the test eye after 4 hours of lens wear when compared to the control eye and the collection from the test eye after 2 hours (for both; n = 5; p < 0.001). The total cell yield at 4 hours was 813 ± 333 and 455 ± 218 for the test and control eyes, respectively (N = 5, triplicate, p = 0.003). A number of cells were observed to have taken up the fluorescein dye from the initial fluorescein instillation. Confocal microscopy of fluorescein-stained cells revealed that fluorescein was present throughout the cell cytoplasm and was retained in the cells for many hours after recovery from the corneal surface. This pilot study indicates that increased epithelial cell shedding was associated with a lens-solution combination which induces SICS. Our data provides insight into the transient nature of the SICS reaction and the nature of fluorescein staining observed in SICS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have recently shown that VEGF functions as a survival factor for newly formed vessels during developmental neovascularization, but is not required for maintenance of mature vessels. Reasoning that expanding tumors contain a significant fraction of newly formed and remodeling vessels, we examined whether abrupt withdrawal of VEGF will result in regression of preformed tumor vessels. Using a tetracycline-regulated VEGF expression system in xenografted C6 glioma cells, we showed that shutting off VEGF production leads to detachment of endothelial cells from the walls of preformed vessels and their subsequent death by apoptosis. Vascular collapse then leads to hemorrhages and extensive tumor necrosis. These results suggest that enforced withdrawal of vascular survival factors can be applied to target preformed tumor vasculature in established tumors. The system was also used to examine phenotypes resulting from over-expression of VEGF. When expression of the transfected VEGF cDNA was continuously “on,” tumors became hyper-vascularized with abnormally large vessels, presumably arising from excessive fusions. Tumors were significantly less necrotic, suggesting that necrosis in these tumors is the result of insufficient angiogenesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Xenopus ARVCF (xARVCF), a member of p120-catenin subfamily, binds cadherin cytoplasmic domains to enhance cadherin metabolic stability, or when dissociated, modulates Rho-family GTPases. We previously found that xARVCF binds directly to Xenopus KazrinA (xKazrinA), a widely expressed, conserved protein that bears little homology to established protein families. xKazrinA is also known to influence keratinocyte proliferation-differentiation and cytoskeletal activity. In my study, I first evaluated the expression pattern of endogenous Kazrin RNA and protein in Xenopus embryogenesis as well as in adult tissues. We then collaboratively predicted the helical structure of Kazrin’s coiled-coil domain, and I obtained evidence of Kazrin’s dimerization/oligomerization. In considering the intracellular localization of the xARVCF-catenin:xKazrin complex, I did not resolve xKazrinA in a larger ternary complex with cadherin, nor did I detect its co-precipitation with core desmosomal components. Instead, screening revealed that xKazrinA binds spectrin. This suggested a potential means by which xKazrinA localizes to cell-cell junctions, and indeed, biochemical assays confirmed a ternary xARVCF:xKazrinA:xβ2-spectrin complex. Functionally, I demonstrated that xKazrin stabilizes cadherins by negatively modulating the RhoA small-GTPase. I further revealed that xKazrinA binds to p190B RhoGAP (an inhibitor of RhoA), and enhances p190B’s association with xARVCF. Supporting their functional interaction in vivo, Xenopus embryos depleted of xKazrin exhibited ectodermal shedding, a phenotype that could be rescued with exogenous xARVCF. Cell shedding appeared to be caused by RhoA activation, which consequently altered actin organization and cadherin function. Indeed, I was capable of rescuing Kazrin depletion with ectopic expression of p190B RhoGAP. In addition, I obtained evidence that xARVCF and xKazrin participate in craniofacial development, with effects observed upon the neural crest. Finally, I found that xKazrinA associates further with delta-catenin and p0071-catenin, but not with p120-catenin, suggesting that Kazrin interacts selectively with additional members of the p120-catenin sub-family. Taken together, my study supports Kazrin’s essential role in development, and reveals KazrinA’s biochemical and functional association with ARVCF-catenin, spectrin and p190B RhoGAP.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Meprinα, an astacin-type metalloprotease is overexpressed in colorectal cancer cells and is secreted in a non-polarized fashion, leading to the accumulation of meprinα in the tumor stroma. The transition from normal colonocytes to colorectal cancer correlates with increased meprinα activity at primary tumor sites. A role for meprinα in invasion and metastatic dissemination is supported by its pro-angiogenic and pro-migratory activity. In the present study, we provide evidence for a meprinα-mediated transactivation of the EGFR signaling pathway and suggest that this mechanism is involved in colorectal cancer progression. Using alkaline phosphatase-tagged EGFR ligands and an ELISA assay, we demonstrate that meprinα is capable of shedding epidermal growth factor (EGF) and transforming growth factor-α (TGFα) from the plasma membrane. Shedding was abrogated using actinonin, an inhibitor for meprinα. The physiological effects of meprinα-mediated shedding of EGF and TGFα were investigated with human colorectal adenocarcinoma cells (Caco-2). Proteolytically active meprinα leads to an increase in EGFR and ERK1/2 phosphorylation and subsequently enhances cell proliferation and migration. In conclusion, the implication of meprinα in the EGFR/MAPK signaling pathway indicates a role of meprinα in colorectal cancer progression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Productive infection of human endothelial cells with Japanese encephalitis virus (JEV), a single stranded RNA virus induces shedding of sHLA-E. We show here that sHLA-E that is released upon infection with this flavivirus can inhibit IL-2 and PMA mediated ERK 1/2 phosphorylation in two NK cell lines, Nishi and NKL. Virus infected or IFN-gamma treated cell culture supernatants containing sHLA-E were found to partially inhibit IL-2 mediated induction of CD25 molecules on NKL cells. It was also found that sHLA-E could inhibit IL-2 induced H-3]-thymidine incorporation suggesting that, similar to cell surface expressed HLA-E, sHLA-E could also inhibit NK cell responses. Hence JEV-induced shedding of sHLA-E needs further investigation to better understand immune responses in JEV infections since it may have a role in viral evasion of NK cell responses. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L-selectin plays a crucial role in inflammation cascade by initiating the tethering and rolling of leukocytes on endothelium wall. While many L-selectin molecules are rapidly shed from the cell surface upon activation, the remaining membrane-anchored L-selectin may still play an important role in regulating leukocyte rolling and adhesion with different binding kinetics. Here we developed an in vitro model to activate Jurkat cells via interlukin-8 (IL-8) and quantified the two-dimensional (2D) binding kinetics, using a micropipette aspiration assay, of membrane-anchored L-selectin to P-selectin glycoprotein ligand 1 (PSGL-1) ligand coupled onto human red blood cells (RBCs). The data indicated that L-selectin shedding reduced the amount of membrane-anchored L-selectin and lowered both its reverse and forward rates. These results suggested that the rolling dynamics of activated leukocytes was determined by two opposite impacts: reducing the surface presentation would enhance the rolling but lowering the kinetic rates would decrease the rolling. This finding provides a new insight into understanding how L-selectin shedding regulates leukocyte rolling and adhesion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo-2L) has emerged as a promising anticancer agent. However, resistance to TRAIL is likely to be a major problem, and sensitization of cancer cells to TRAIL may therefore be an important anticancer strategy. In this study, we examined the effect of the epidermal growth factor receptor (EGFR)tyrosine kinase inhibitor (TKI) gefitinib and a human epidermal receptor 2 (HER2)-TKI (M578440) on the sensitivity of human colorectal cancer (CRC) cell lines to recombinant human TRAIL (rhTRAIL). A synergistic interaction between rhTRAIL and gefitinib and rhTRAIL and M578440 was observed in both rhTRAIL-sensitive and resistant CRC cells. This synergy correlated with an increase in EGFR and HER2 activation after rhTRAIL treatment. Furthermore, treatment of CRC cells with rhTRAIL resulted in activation of the Src family kinases (SFK). Importantly, we found that rhTRAIL treatment induced shedding of transforming growth factor-alpha (TGF-alpha) that was dependent on SFK activity and the protease ADAM-17. Moreover, this shedding of TGF-alpha was critical for rhTRAIL-induced activation of EGFR. In support of this, SFK inhibitors and small interfering RNAs targeting ADAM-17 and TGF-alpha also sensitized CRC cells to rhTRAIL-mediated apoptosis. Taken together, our findings indicate that both rhTRAIL-sensitive and resistant CRC cells respond to rhTRAIL treatment by activating an EGFR/HER2-mediated survival response and that these cells can be sensitized to rhTRAIL using EGFR/HER2-targeted therapies. Furthermore, this acute response to rhTRAIL is regulated by SFK-mediated and ADAM-17-mediated shedding of TGF-alpha, such that targeting SFKs or inhibiting ADAM-17, in combination with rhTRAIL, may enhance the response of CRC tumors to rhTRAIL. [Cancer Res 2008;68(20):8312-21]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oncogenic mutations in Kras occur in 40% to 45% of patients with advanced colorectal cancer (CRC). We have previously shown that chemotherapy acutely activates ADAM17, resulting in growth factor shedding, growth factor receptor activation, and drug resistance in CRC tumors. In this study, we examined the role of mutant Kras in regulating growth factor shedding and ADAM17 activity, using isogenic Kras mutant (MT) and wild-type (WT) HCT116 CRC cells. Significantly higher levels of TGF-a and VEGF were shed from KrasMT HCT116 cells, both basally and following chemotherapy treatment, and this correlated with increased pErk (phosphorylated extracellular signal regulated kinase)1/2 levels and ADAM17 activity. Inhibition of Kras, MEK (MAP/ERK kinase)1/2, or Erk1/2 inhibition abrogated chemotherapy-induced ADAM17 activity and TGF-a shedding. Moreover, we found that these effects were not drug or cell line specific. In addition, MEK1/2 inhibition in KrasMT xenografts resulted in significant decreases in ADAM17 activity and growth factor shedding in vivo, which correlated with dramatically attenuated tumor growth. Furthermore, we found that MEK1/2 inhibition significantly induced apoptosis both alone and when combined with chemotherapy in KrasMT cells. Importantly, we found that sensitivity to MEK1/2 inhibition was ADAM17 dependent in vitro and in vivo. Collectively, our findings indicate that oncogenic Kras regulates ADAM17 activity and thereby growth factor ligand shedding in a MEK1/2/Erk1/2-dependent manner and that KrasMT CRC tumors are vulnerable to MEK1/2 inhibitors, at least in part, due to their dependency on ADAM17 activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ADAM17 (where ADAM is 'a disintegrin and metalloproteinase') can rapidly modulate cell-surface signalling events by the proteolytic release of soluble forms of proligands for cellular receptors. Many regulatory pathways affect the ADAM17 sheddase activity, but the mechanisms for the activation are still not clear. We have utilized a cell-based ADAM17 assay to show that thiol isomerases, specifically PDI (protein disulfide isomerase), could be responsible for maintaining ADAM17 in an inactive form. Down-regulation of thiol isomerases, by changes in the redox environment (for instance as elicited by phorbol ester modulation of mitochondrial reactive oxygen species) markedly enhanced ADAM17 activation. On the basis of ELISA binding studies with novel fragment antibodies against ADAM17 we propose that isomerization of the disulfide bonds in ADAM17, and the subsequent conformational changes, form the basis for the modulation of ADAM17 activity. The shuffling of disulfide bond patterns in ADAMs has been suggested by a number of recent adamalysin crystal structures, with distinct disulfide bond patterns altering the relative orientations of the domains. Such a mechanism is rapid and reversible, and the role of thiol isomerases should be investigated further as a potential factor in the redox regulation of ADAM17.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The virulence factor IpgD, delivered into nonphagocytic cells by the type III secretion system of the pathogen Shigella flexneri, is a phosphoinositide 4-phosphatase generating phosphatidylinositol 5 monophosphate (PtdIns(5) P). We show that PtdIns(5) P is rapidly produced and concentrated at the entry foci of the bacteria, where it colocalises with phosphorylated Akt during the first steps of infection. Moreover, S. flexneri-induced phosphorylation of host cell Akt and its targets specifically requires IpgD. Ectopic expression of IpgD in various cell types, but not of its inactive mutant, or addition of short-chain penetrating PtdIns(5) P is sufficient to induce Akt phosphorylation. Conversely, sequestration of PtdIns(5) P or reduction of its level strongly decreases Akt phosphorylation in infected cells or in IpgD-expressing cells. Accordingly, IpgD and PtdIns(5) P production specifically activates a class IA PI 3-kinase via a mechanism involving tyrosine phosphorylations. Thus, S. flexneri parasitism is shedding light onto a new mechanism of PI 3-kinase/Akt activation via PtdIns(5) P production that plays an important role in host cell responses such as survival.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Toxocara vitulorum is a pathogenic nematode from the small intestine of very young buffalo calves. To understand the development of the inflammatory responses in the wall of the gut, samples of tissues were removed from the duodenum, jejunum and ileum of buffalo calves naturally infected with T. vitulorum during the beginning of the infection, at the peak of egg output, as well as during the periods of rejection of the worms and post-rejection. Two additional control groups of uninfected calves (by anti-helminthic therapy of their mothers and after the birth) were also necropsied on days 30 and 50 after birth. Blood samples were fortnightly collected from birth to 174 days post-birth. Blood smears were prepared and stained with Giemsa for eosinophils. The parasitological status of buffalo calves was evaluated through weekly fecal egg counts (EPG) from 1 to 106 days after birth, which revealed that T. vitulorum egg shedding started on day 11, reached the peak of the infection on day 49 and finally expelled the parasites between days 50 and 85 after birth. In the infected buffalo calves, the mast cell population increased significantly, by two-fold in the mucosa (villus-crypt unit (VCU)) of the duodenum and four-fold in the proximal jejunum; but these increases were statistically significant only at the peak of the infection. Although mast cell numbers increased in the mucosa of the ileum as well as in both the submucosal and muscle tissues of the duodenum, proximal jejunum and ileum, the data was not significantly different from the controls. Eosinophil numbers increased in the mucosa of the duodenum (two-five times higher than the control) and proximal jejunum (three-five-fold) during the period of the infection (beginning, peak and rejection). The relative numbers of eosinophils increased in the blood stream from the second to the seventh week. In conclusion, T. vitulorum infection elicited mastocytosis and tissue eosinophilia in the duodenum and proximal jejunum, as well as eosinophilia in the blood stream, during the beginning, at the peak and during the rejection of the worm. After the rejection of the worms, the numbers of these cells returned to normal levels suggesting that these cells may have a role in the process of rejection of T. vitulorum by the host. (C) 2003 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of boron (B) on cotton growth and fruit shedding may be due not only to physiological or biochemical effects, but also to vascular tissue malformation. This experiment investigated petiole and floral peduncle anatomical alterations and growth of cotton supplied with deficient and sufficient B in nutrient solution. Cotton (Gossypium hirsutum cv. 'Delta Opal') plants were grown in solutions containing 0, 1.5, 3.0, 4.5, and 6.0 mu mol L-1 of B from 22 to 36 d after plant emergence (DAPE). From 36 to 51 DAPE, B was omitted from the nutrient solution. Petioles from young leaves and floral bud peduncles (first position of the first sympodial) were sampled and the cross-section anatomy observed under an optical microscope. The number of vascular bundles of the petiole was decreased in B-deficient plants and the xylem was disorganized. Phloem elements in the peduncle vascular cylinder of B-deficient plants did not show clear differentiation. The few xylem elements that were formed were also disorganized. Modifications caused by B deficiency may have impaired B and photosynthate translocation into new cotton growth. Boron accumulation in the shoot of B-deficient plants suggested that there was some B translocation within the plant. It could be inferred that cotton growth would be impaired by the decrease in carbohydrate translocation rather than by B deficiency in the tissue alone.